LA TRIGONOMETRÍA HINDÚ



El desarrollo de nuestro sistema de notación para los números naturales fue sin duda una de las dos contribuciones más importante de la India a la historia de la matemática.  La otra consistió en la introducción de lo equivalente a la función seno en trigonometría, para reemplazar las tablas de cuerdas griegas; las tablas más antiguas de la relación seno que han llegado hasta nosotros son las que figuran en los Siddhantas y en el Aryabhatiya, donde se dan los senos de los ángulos menores o iguales que 90° para 24 intervalos angulares iguales de 3( 3° 4/ ) cada uno. Para expresar la longitud del arco y la del seno en términos de la misma unidad, se tomaba como radio 3.438 unidades y la circunferencia correspondiente como 360 · 60 = 21.600 unidades; estos valores implican un valor de π que coincide con el de Ptolomeo hasta la cuarta cifra significativa, pero Aryabhata utiliza en otros contextos el valor 10 para π, valor que aparece tan frecuentemente en la India que se le conoce a veces como <<el valor hindú>> de π.

Para el seno de 3 ( 4/ 3° ) tanto los Siddhantas como el Aryabhatiya toman exactamente el número de unidades que contiene el arco, es decir 60 [3(3° )4/ ] = 225; traducido a lenguaje moderno, el seno de un ángulo pequeño es casi igual a la medida del ángulo en radianes, que es justamente lo que hacían los hindúes. Para las entradas restantes de la tabla de senos utilizaban los hindúes una fórmula de recursión que puede expresarse en la forma siguiente: si designamos por Sn el n-ésimo seno en la sucesión que va de n = 1 a n = 24, y si la suma de los n primeros senos es Rn , entonces Sn + 1 = Sn + S1 − Rn / S1 . A partir de esta regla uno puede deducir fácilmente que sen 7 ( )2/ 1° = 449, sen 11 1( ° )4/ = 671, sen °15 = 890, y así hasta seno 90° = 3.438, que son los valores que aparecen en las tablas de los Siddhantas y del Aryabhatiya. Las tablas incluyen además los valores de lo que nosotros llamamos hoy el seno verso de un ángulo, es decir, de 1 −cos θ en forma trigonométrica moderna, o de 3.438 · (1 − cos θ) en forma trigonométrica hindú, desde sen vers. 3 3( ° )4/ = 7 a sen vers. °90 = 3.438. Si dividimos los números que figuran en la tabla por 3.438 nos encontramos con resultados que se aproximan mucho a los valores correspondientes en las tablas trigonométricas modernas.


LA DIVISIÓN LARGA (MÉTODO DE LA GALERA)

No sabemos dónde tuvo su origen exactamente el método de multiplicación por celosía, pero parece lo más probable que fuera en la India, puesto que allí se utilizaba ya en el siglo XII como mínimo, y de la India parece ser que se extendió a China y a Arabia. De los árabes pasó a Italia durante los siglos XIV y XV, y aquí fue donde recibió el nombre de celosía debido a la semejanza del diagrama con las rejillas de madera que adornaban y protegían las ventanas en Venecia y en otras ciudades italianas. De hecho, la palabra <<celosía>> parece provenir del italiano celosía, y es de uso común en España, Francia, Alemania, Holanda y Rusia por lo menos, para designar las persianas venecianas. Los árabes, y a través de ellos más tarde los europeos, adoptaron la mayor parte de sus artificios aritméticos de los hindúes, y por lo tanto es muy probable que también provenga de la India el método de división larga conocido como el <<método de la galera>>, por su semejanza con un barco con las velas desplegadas. Para ilustrar este método, supongamos la división de 44.977 por 382; en la figura 2.1 aparece hecha esta división por el método moderno, y en la figura 2.2 por el método de la galera11. 


Este segundo se parece mucho al primero excepto en que el dividendo aparece en el medio, ya que las restas se hacen cancelando los dígitos y poniendo las diferencias encima de los minuendos y no debajo. Así pues, el resto final 283 aparece en la parte superior derecha y no en la parte inferior. El proceso reproducido en la figura 2 es fácil de seguir si tenemos en cuenta que los dígitos de un substraendo dado, como el 2674, o de una diferencia dada, como la 2957, no figuran todos ellos necesariamente en la misma fila, y que los substraendos aparecen escritos por debajo de la línea central y las diferencias por encima; por otra parte, la posición en una columna es importante, pero no la posición en una fila. El cálculo de raíces de números probablemente siguió un esquema análogo al de la <<galera>>, ligado en la época posterior al teorema del binomio en la forma del <<triángulo de Pascal>>, pero los matemáticos hindúes no daban nunca explicaciones de sus cálculos ni demostraciones de sus reglas; es posible que las influencias china o babilónica jugaran un papel importante en el proceso de evolución del cálculo de raíces. Se oye decir a veces que <<la prueba de los nueves>> es un invento hindú, pero parece que los griegos ya conocían esta propiedad mucho antes, aunque no la usaron de una manera general, y que este método se popularizó solamente con los árabes hacia el siglo XI.

Comentarios

Entradas populares de este blog

GEOMETRÍA NO EUCLIDIANA, GEOMETRÍA PROYECTIVA

HISTORIA DE LA GEOMETRÍA ANALÍTICA DEL SIGLO XVII