LA HISTORIA DE π


Quizás sea el número más famoso de todos. La relación entre la longitud de una circunferencia y su diámetro en la Geometría euclidiana, π (pi), es un número irracional. Se la considera una de las constantes matemáticas más importantes y resulta indispensable para la matemática, la física y la ingeniería. Te contamos la historia de este número que posee infinitos decimales y que no puede expresarse como un cociente entre dos enteros, cuyo valor (truncado) es 3,14159265358979323846...

Es indudable que π ha fascinado a la humanidad desde tiempos inmemoriales. En todas las épocas, los matemáticos más capaces han dedicado parte de su tiempo en la búsqueda de un algoritmo que permita calcular mejor o más rápidamente su valor. Concretamente, π expresa la relación que existe entre la longitud de una circunferencia y su diámetro dentro del marco de la llamada Geometría euclidiana (esta relación no es constante en geometrías no Euclides). A pesar que para prácticamente cualquier propósito práctico imaginable basta con conocer una decena de decimales, la humanidad ha dedicado millones de horas hombre a calcular el mayor número posible de ellos, quizás buscando la tan esquiva periodicidad que permita expresarlo como el cociente entre dos enteros. Tal trabajo es, por supuesto, absolutamente inútil: desde 1761 sabemos que se trata de un número irracional, lo que significa que no puede expresarse como fracción de dos números enteros, tal como lo demostró el genial Johann Heinrich Lambert.

El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física. El récord actual es de 2.576.980.370.000 de decimales, y lo calculó Daisuke Takahashi en un superordenador T2K Tsukuba System. El valor más antiguo que se conoce es 3,1605 y aparece escrito en el “Papiro de Ahmes”, encontrado en Egipto y datado en el año 1900 antes de Cristo. A pesar del “retroceso” en la precisión  de π que significó la adopción de “3” (por motivos religiosos) en el comienzo de la era cristiana, a lo largo de los siglos este número se ha ido calculando cada vez con mayor número de decimales correctos. En el año 263 de nuestra era, el chino Liu Hui calculó su valor como 3,14159 (un error de menos de 1 en un millón). En el año 1400, el matemático indio Madhava calculó 3,14159265359 (0,085 partes por millón de error).

Comentarios

Entradas populares de este blog

LA TRIGONOMETRÍA HINDÚ

GEOMETRÍA NO EUCLIDIANA, GEOMETRÍA PROYECTIVA

HISTORIA DE LA GEOMETRÍA ANALÍTICA DEL SIGLO XVII