ANÁLISIS COMPLEJO, ANÁLISIS VECTORIAL


  ANÁLISIS COMPLEJO



 El análisis complejo (o teoría de las funciones de variable compleja) es la rama de las matemáticas que en parte investiga las funciones holomorfas, también llamadas funciones analíticas. Una función es holomorfa en una región abierta del plano complejo si está definida en esta región, toma valores complejos y por último es diferenciable en cada punto de esta región abierta con derivadas continuas.
El que una función compleja sea diferenciable en el sentido complejo tiene consecuencias mucho más fuertes que la diferenciabilidadusual en los reales. Por ejemplo, toda función holomorfa se puede representar como una serie de potencias en algún disco abierto donde la serie converge a la función. Si la serie de potencias converge en todo el plano complejo se dice que la función es entera. Una definición relacionada con función holomorfa es función analítica: una función compleja sobre los complejos que puede ser representada como una serie de potencias. De modo que toda función holomorfa también cumple la definición de función analítica pero no toda función analítica es holomorfa. En particular, las funciones holomorfas son infinitamente diferenciables, un hecho que es marcadamente diferente de lo que ocurre en las funciones reales diferenciables. La mayoría de las funciones elementales como lo son, por ejemplo, algunos polinomios, la función exponencial y las funciones trigonométricas, son holomorfas

HISTORIA

El análisis complejo es una de las ramas clásicas de las matemáticas que tiene sus raíces más allá del siglo XIX. Los nombres destacados en su desarrollo son EulerGaussRiemannCauchyWeierstrass y muchos más en el siglo XX. Tradicionalmente, el análisis complejo, en particular la teoría de las aplicaciones conformes, tiene muchas aplicaciones en ingeniería, pero es ampliamente usada también en teoría de números analítica. En tiempos modernos se convirtió en popular gracias al empuje de la dinámica compleja y los dibujos de fractales, producidos por la iteración de funciones holomorfas, de los cuales el más popular es el conjunto de Mandelbrot. Otras aplicaciones importantes del análisis complejo son las de la teoría de cuerdas, una teoría de campos cuánticos conforme-invariante.ORIA

ANÁLISIS VECTORIAL

El cálculo vectorialanálisis vectorial o cálculo multivariable es un campo de las matemáticas referidas al análisis real multivariable de vectores en 2 o más dimensiones. Es un enfoque de la geometría diferencial como conjunto de fórmulas y técnicas para solucionar problemas muy útiles para la ingeniería y la física.
Consideramos los campos vectoriales, que asocian un vector a cada punto en el espacio, y campos escalares, que asocian un escalar a cada punto en el espacio. Por ejemplo, la temperatura de una piscina es un campo escalar: a cada punto asociamos un valor escalar de temperatura. El flujo del agua en la misma piscina es un campo vectorial: a cada punto asociamos un vector de velocidad.
Cuatro operaciones son importantes en el cálculo vectorial:
  • Gradiente: mide la tasa y la dirección del cambio en un campo escalar; el gradiente de un campo escalar es un campo vectorial.
  • Rotor o rotacional: mide la tendencia de un campo vectorial a rotar alrededor de un punto; el rotor de un campo vectorial es otro campo vectorial.
  • Divergencia: mide la tendencia de un campo vectorial a originarse o converger hacia ciertos puntos; la divergencia de un campo vectorial es un campo escalar.
  • Laplaciano: relaciona el "promedio" de una propiedad en un punto del espacio con otra magnitud, es un operador diferencial de segundo orden.
La mayoría de los resultados analíticos se entienden más fácilmente usando la maquinaria de la geometría diferencial, de la cual el cálculo vectorial forma un subconjunto.
     
HISTORIA

El estudio de los vectores se origina con la invención de los cuaterniones de Hamilton, quien junto a otros los desarrollaron como herramienta matemáticas para la exploración del espacio físico. Pero los resultados fueron desilusionantes, porque vieron que los cuaterniones eran demasiado complicados para entenderlos con rapidez y aplicarlos fácilmente.
Los cuaterniones contenían una parte escalar y una parte vectorial, y las dificultades surgían cuando estas partes se manejaban al mismo tiempo. Los científicos se dieron cuenta de que muchos problemas se podían manejar considerando la parte vectorial por separado y así comenzó el Análisis Vectorial.

Comentarios

Entradas populares de este blog

LA TRIGONOMETRÍA HINDÚ

GEOMETRÍA NO EUCLIDIANA, GEOMETRÍA PROYECTIVA

HISTORIA DE LA GEOMETRÍA ANALÍTICA DEL SIGLO XVII