MATEMATICAS DEL SIGLO XVIII


EL CÁLCULO


El Cálculo constituye una de las grandes conquistas intelectuales de la humanidad. Una vez construído, la historia de la matemática ya no fue igual: la geometría, el álgebra y la aritmética, la trigonometría, se colocaron en una nueva perspectiva teórica. Detrás de cualquier invento, descubrimiento o nueva teoría, existe, indudablemente, la evolución de ideas que hacen posible su nacimiento. Es muy interesante prestar atención en el bagaje de conocimientos que se acumula, desarrolla y evoluciona a través de los años para dar lugar, en algún momento en particular y a través de alguna persona en especial, al nacimiento de una nueva idea, de una nueva teoría, que seguramente se va a convertir en un descubrimiento importante para el estado actual de la ciencia y, por lo tanto merece el reconocimiento. El Cálculo cristaliza conceptos y métodos que la humanidad estuvo tratando de dominar por más de veinte siglos. Una larga lista de personas trabajaron con los métodos "infinitesimales" pero hubo que esperar hasta el siglo XVII para tener la madurez social, científica y matemática que permitiría construir el Cálculo que utilizamos en nuestros días.
Sus aplicaciones son difíciles de cuantificar porque toda la matemática moderna, de una u otra forma, ha recibido su influencia; y las diferentes partes del andamiaje matemático interactúan constantemente con las ciencias naturales y la tecnología moderna.
Newton y Leibniz son considerados los inventores del cálculo pero representan un eslabón en una larga cadena iniciada muchos siglos antes. Fueron ellos quienes dieron a los procedimientos infinitesimales de sus antecesores inmediatos, Barrow y Fermat, la unidad algorítmica y la precisión necesaria como método novedoso y de generalidad suficiente para su desarrollo posterior. Estos desarrollos estuvieron elaborados a partir de visiones de hombres como Torricelli, Cavalieri, y Galileo; o Kepler, Valerio, y Stevin. Los alcances de las operaciones iniciales con infinitesimales que estos hombres lograron, fueron también resultado directo de las contribuciones de Oresme, Arquímedes y Eudoxo. Finalmente el trabajo de estos últimos estuvo inspirado por problemas matemáticos y filosóficos sugeridos por Aristóteles, Platón, Tales de Mileto, Zenón y Pitágoras. Para tener la perspectiva científica e histórica apropiada, debe reconocerse que una de las contribuciones previas decisivas fue la Geometría Analítica desarrollada independientemente por Descartes y Fermat.



  

HISTORIA DEL CALCULO INTEGRAL

El origen del cálculo integral se remonta a la época de Arquímedes (287-212 a.C.), matemático griego de la antigüedad, que obtuvo resultados tan importantes como el valor del área encerrada por un segmento parabólico. La derivada apareció veinte siglos después para resolver otros problemas que en principio no tenían nada en común con el cálculo integral. El descubrimiento más importante del cálculo infinitesimal (creado por Barrow, Newton y Leibniz) es la íntima relación entre la derivada y la integral definida, a pesar de haber seguido caminos diferentes durante veinte siglos. 

Sin embargo, fue Euler quien llevó la integración hasta sus últimas consecuencias, de tal forma que los métodos de integración indefinida alcanzaron prácticamente su nivel actual. El cálculo de integrales de tipos especiales ya a comienzos de siglo, conllevó el descubrimiento de una serie de resultados de la teoría de las funciones especiales. Como las funciones gamma y beta, el logaritmo integral o las funciones elípticas.



HISTORIA DE LA DERIVADA


Los problemas típicos que dieron origen al cálculo infinitesimal, comenzaron a plantearse en la época clásica de la antigua Grecia (siglo III a.c), pero no se encontraron métodos sistemáticos de resolución hasta veinte siglos después (en el siglo XVII por obra de Issac Newton y Gottfried Leibniz).
En lo que atañe a las derivadas existen dos conceptos de tipo geométrico que le dieron origen:
En su conjunto dieron origen a lo que modernamente se conoce como calculo diferencial

Los matemáticos perdieron el miedo que los griegos le habían tenido a los infinitos: Johannes Kepler y Bonaventura Cavalieri fueron los primeros en usarlos, empezaron a andar un camino que llevaría en medio siglo al descubrimiento del cálculo infinitesimal.
A mediados del siglo XVII, las cantidades infinitesimales fueron cada vez más usadas para resolver problemas de cálculos de tangentes, áreas, volúmenes; los primeros darían origen al cálculo diferencial, los otros al integral.

NEWTON Y LEIBNIZ





A finales del siglo XVII sintetizaron en dos conceptos, métodos usados por sus predecesores los que hoy llamamos «derivadas» e «integrales». Desarrollaron reglas para manipular las derivadas (reglas de derivación) y mostraron que ambos conceptos eran inversos (teorema fundamental del cálculo).
Newton desarrolló en Cambridge su propio método para el cálculo de tangentes. En 1665 encontró un algoritmo para derivar funciones algebraicas que coincidía con el descubierto por Fermat. A finales de 1665 se dedicó a reestructurar las bases de su cálculo, intentando desligarse de los infinitesimales, e introdujo el concepto de fluxión, que para él era la velocidad con la que una variable «fluye» (varía) con el tiempo.

Leibniz, por su parte, descubrió y comenzó a desarrollar el cálculo diferencial en 1675. Fue el primero en publicar los mismos resultados que Newton descubriera 10 años antes. En su investigación conservó un carácter geométrico y trató a la derivada como un cociente incrementa y no como una velocidad. Fue quizás el mayor inventor de símbolos matemáticos. A él se deben los nombres de: cálculo diferencial  y cálculo integral, así como el símbolo:  
Y el símbolo de integral
  


Comentarios

Entradas populares de este blog

LA TRIGONOMETRÍA HINDÚ

MÉTODO DE MULTIPLICACIÓN HINDÚ

HISTORIA DE LA GEOMETRÍA ANALÍTICA DEL SIGLO XVII